4 Projekte aus der kältetechnischen Praxis

4.1 Projekt: Steckerfertige Kühlzelle

4.1.1 Ausgangssituation

Ein Schafzüchter möchte eine kleine Kühlzelle mit eingebautem Kälteaggregat zur Kühlung von Schaffleisch. Die Kühlzelle mit Boden wird zur Aufbewahrung von ca. 6 Tierhälften benötigt, wobei sich der Betreiber die Option offen hält, eventuell noch mehr Ware einzulagern. Sie wird in einem eigens dafür hergerichteten Aufstellungsraum eingebaut. Die Wärme des Kälteaggregats wird problemlos durch eine bauseitig vorbereitete Fensteröffnung abgeführt. Das Haus ist in Hanglage gebaut und der o. a. Aufstellungsraum befindet sich im rückwärtigen, hangseitigen Gebäudeteil. Der rechteckige, nicht unterkellerte Raum ist bis in Deckenhöhe an einer Längsund einer Breitseite vom angrenzenden Erdreich umgeben.

4.1.2 Ermittlung der für die Projektierung der Kälteanlage erforderlichen Basisdaten

k-Wert der Kühlzelle Type 60/215 : 0,32 $\frac{W}{m^2K}$

Maße der Zelle mit Boden: Breite außen: 2,10 m (siehe Abbildung 4.1) Tiefe, außen: 2,10 m

Höhe, außen: 2,15 m A_i : 3,92 m² V_i : 8,0 m³

Das Schlachtgewicht von Schafen beträgt 25 – 35 kg. Gerechnet wird 15 kg pro Tierhälfte!

Die spezifische Wärmekapazität von Schaffleisch (vor dem Erstarren!) beträgt 2,78 kJ/kgK. Die Einbringtemperatur wird mit

 $t_{\rm Einbring} = +30\,{\rm ^{\circ}C}$ angesetzt. Die Raumtemperatur sei $t_{\rm R} = +2\,{\rm ^{\circ}C}$

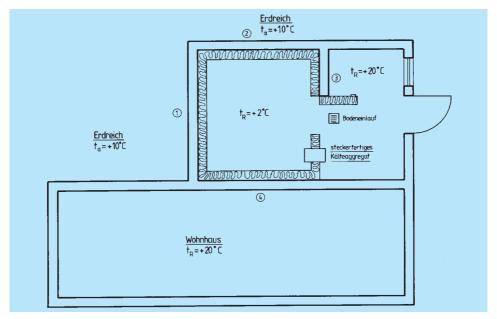


Abbildung 4.1 Lageskizze (unmaßstäblich) zur Aufstellung der Kühlzelle

4.1.3 Ermittlung des Kältebedarfs

4.1.3.1 Wärmeeinströmung von außen

Wand 1:

$$\dot{Q}_{\rm E} = A \cdot k \cdot \Delta T \quad \text{mit} \quad \text{m}^2 \cdot \text{W/m}^2 \text{K} \cdot \text{K} \quad \text{in} \quad \text{W}$$

$$\dot{Q}_{\rm E1} = (1,98 \cdot 2,03) \cdot 0,32 \cdot 8 = 10,29$$

$$\dot{Q}_{\rm E1} = \textbf{10,29} \text{ W}$$

Wand 2:

$$\dot{Q}_{\rm E} = A \cdot k \cdot \Delta T \quad {\rm mit} \quad {\rm m}^2 \cdot {\rm W/m}^2 {\rm K} \cdot {\rm K} \quad {\rm in} \quad {\rm W}$$

$$\dot{Q}_{\rm E2} = (1.98 \cdot 2.03) \cdot 0.32 \cdot 8 = 10.29$$

$$\dot{Q}_{\rm E2} = {\bf 10.29} \, {\rm W}$$

Wand 3:

$$\dot{Q}_{\rm E} = A \cdot k \cdot \Delta T \quad {\rm mit} \quad {\rm m}^2 \cdot {\rm W/m}^2 {\rm K} \cdot {\rm K} \quad {\rm in} \quad {\rm W}$$

$$\dot{Q}_{\rm E3} = (1,98 \cdot 2,03) \cdot 0,32 \cdot 18 = 23,15$$

$$\dot{Q}_{\rm E3} = {\bf 23,15} \, {\rm W}$$

Wand 4:

$$\dot{Q}_{\rm E} = A \cdot k \cdot \Delta T \quad {\rm mit} \quad {\rm m}^2 \cdot {\rm W/m}^2 {\rm K} \cdot {\rm K} \quad {\rm in} \quad {\rm W}$$

$$\dot{Q}_{\rm E4} = (1,98 \cdot 2,03) \cdot 0,32 \cdot 18 = 23,15$$

$$\dot{Q}_{\rm E4} = {\bf 23,15} \, {\rm W}$$

Zellendecke:

$$\dot{Q}_{\rm E} = A \cdot k \cdot \Delta T \quad {\rm mit} \quad {\rm m}^2 \cdot {\rm W/m}^2 {\rm K} \cdot {\rm K} \quad {\rm in} \quad {\rm W}$$

$$\dot{Q}_{\rm E5} = (1,98 \cdot 1,98) \cdot 0,32 \cdot 18 = 22,58$$

$$\dot{Q}_{\rm E5} = {\bf 22,58} \; {\bf W}$$

Zellenboden:

$$\dot{Q}_{\rm E} = A \cdot k \cdot \Delta T \quad {\rm mit} \quad {\rm m}^2 \cdot {\rm W/m}^2 {\rm K} \cdot {\rm K} \quad {\rm in} \quad {\rm W}$$

$$\dot{Q}_{\rm E6} = (1.98 \cdot 1.98) \cdot 0.32 \cdot 8 = 10.03$$

$$\dot{Q}_{\rm E6} = {\bf 10.03} \, {\rm W}$$

$$\dot{Q}_{\rm E.gesamt} = {\bf 99.49} \, {\rm W}$$

Der berechnete Kältebedarf durch Wärmeeinströmung in die Zelle wird anhand der technischen Unterlagen nachfolgend kontrolliert: s. Abbildung 4.2.

Da die eine Hälfte der Wärmeeinströmung mit einem $\Delta T = 18$ K gerechnet werden muss, wird zunächst bei $\Delta T = 20$ K geplant. Ergebnis: 5 000 Wh/Tag; entspricht $\dot{Q}_{\rm E} = 5\,000$ Wh/d: 24 h/d = 208,33 W; davon 50 % ergibt: 104,16 W.

Die andere Hälfte der Wärmeeinströmung wird mit einer Temperaturdifferenz von lediglich $\Delta T = 8$ K gerechnet, sodass auch bei $\Delta T = 10$ K im Diagramm kontrolliert wird. Ergebnis: 2500 Wh/Tag; entspricht $\dot{Q}_{\rm E} = 2\,500$ Wh/d : 24 h/d = 104,16 W; davon 50 % ergibt: 52,08 W;

gerechneter Wert: $\dot{Q}_{\rm E ges} = 99,49 \text{ W}$

Vergleichswert: $\dot{Q}_{E,ges} = 156,34 \text{ W}$

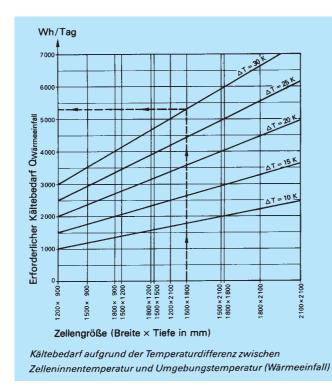


Abbildung 4.2 Kältebedarf aufgrund der Temperaturdifferenz zwischen Zelleninnentemperatur und Umgebungstemperatur (Wärmeeinfall)

4.1.3.2 Kältebedarf durch Beleuchtung und Ventilator

Laut Herstellerdatenblatt wird ein Festwert von $\dot{Q}_{\text{W\"{a}rmeerzeuger}} = 600 \text{ Wh/Tag eingesetzt.}$

$$\dot{Q}_{\text{Wärmeerzeuger}} = 600 \text{ Wh/d} : 24 \text{ h/d} = 25 \text{ W}$$

Kontrollrechnung:

Würde die serienmäßig installierte Ovalleuchte mit einer Leistung von 60 W pro Tag 8 h eingesetzt sein, so errechnet sich ein Wert von:

$$\dot{Q}_{\text{Beleuchtung}} = \frac{i \cdot P \cdot \tau}{24} \text{ mit:}$$

$$i = \text{Anzahl der Leuchten}$$

$$P = \text{Leistung in Watt}$$

$$\tau = \text{Einschaltdauer in h/D}$$

$$\dot{Q}_{\text{Beleuchtung}} = \frac{1 \cdot 60 \cdot 8}{24} = 20 \text{ mit } \frac{1 \cdot W \cdot h \cdot d}{\text{K} \cdot d} \text{ in W}$$

$$\dot{Q}_{\text{Beleuchtung}} = 20 \text{ W}$$

Häufigkeit des Türöffnens pro Tag	Erforderlicher Kältebedarf in Wh/Tag bei Zellengröße (Breite × Tiefe) in mm			
	1 200 × 900 2 500 × 900	1500 × 1 200 1800 × 900	$\begin{array}{c} 1500\times1500 \\ 1500\times1800 \\ 1800\times1200 \\ 2100\times1200 \end{array}$	$1500 \times 2100 \\ 1800 \times 1800 \\ 1800 \times 2100 \\ 2100 \times 2100$
10	290	350	580	720
30	350	465	755	930
100	465	580	930	1 160

Tabelle 4.1 Erforderlicher Kältebedarf

4.1.3.3 Luftwechsel durch Öffnen der Kühlzellentür

Gemäß Tabelle 4.1 wird eine Öffnungshäufigkeit von 10 Öffnungen pro Tag angesetzt (angesichts der geringen Kühlgutmasse durchaus vertretbar).

Ergebnis:
$$Q_{\text{Luftwechsel}} = 720 \text{ Wh/Tag}$$
; entspricht $\dot{Q}_{\text{Luftwechsel}} = 720 \text{ Wh/d}$: $24 \text{ h/d} = 30 \text{ W}$

Kontrollrechnung:

Aus der Tabelle "Enthalpie der Luft für Kühlräume" (Breidert/Schittenhelm, 4. Auflage, S. 46) wird bei $t_{\rm R}=+2$ °C ein Wert von 36,08 kJ/m³ – bezogen auf einen Außenluftzustand von $t_{\rm a}=+20$ °C und $\varphi_{\rm a}=0,50$ – ermittelt.

$$\dot{Q}_{\text{Lufterneurung}} = \frac{V_{\text{R}} \cdot i \cdot \Delta h}{86400} \text{ in kW}$$

mit

 $V_{\rm R}$ in m³

i Anzahl der Luftwechsel, nach Tabelle 4.1

10 Türöffnungen pro Tag

 Δh in kJ/m³

86 400 Sekunden pro Tag

$$\dot{Q}_{L} = \frac{8 \cdot 10 \cdot 36,08}{86400} = 0,0334 \text{ kW}$$

$$\dot{Q}_{\rm L} = 33,4 \; {\rm W}$$

4.1.3.4 Kältebedarf durch Kühlgutbeschickung

Nach Abbildung 4.3 ergibt sich bei einer Temperaturdifferenz von $\Delta T=28~{\rm K}$ ein Kältebedarf von 2 500 Wh/Tag bei einer Beschickungsmenge von 100 kg/Tag und einer Abkühlzeit von 24 Stunden.