Pulse Plating

Cite this publication as

Pulse Plating (2012), Eugen G. Leuze Verlag, Bad Saulgau, ISBN: 9783874803236

60
accesses

Table of content

  • BEGINN
  • Pulse Plating in the Third Millennium
  • Past and Future of Pulse Plating: An Introduction
  • Foreword of the authors
  • List of chapters:
  • Content
  • 1 An Overview of Pulse Deposition
  • 1.1 Introduction
  • 1.2 Basic Defi nitions
  • 1.3 Practical Electrodeposition Systems
  • 1.4 Dynamic Phenomena during Pulsed Deposition or Dissolution
  • 2 Thermodynamics
  • 2.1 Introduction
  • 2.2 Electrochemical Equilibrium at Interfaces
  • 2.3 The Origin of Electrochemical Potentials and the Nernst Equation
  • 2.4 Standard Electrode Potentials
  • 2.5 Standard Electrode Potentials and Speciation of Metal Complexes
  • 2.6 The Electrical Double Layer
  • 2.7 Departure from Equilibrium
  • 2.8 Capacitive Effects in Pulse Plating
  • 3 Reaction Kinetics
  • 3.1 Introduction
  • 3.2 Simple Charge Transfer Kinetics
  • 3.3 Charge Transfer Kinetics of Multistep Processes
  • 3.4 Reaction Mechanisms
  • 3.5 Charge Transfer Kinetics of Alloy Plating
  • 3.6 Effect of Additives on Charge Transfer Kinetics
  • 3.7 Overall Importance of Kinetics in Pulse Plating
  • 4 Nucleation and Morphology
  • 4.1 Introduction
  • 4.2 Mechanism of the Electrochemical Metal Deposition
  • 4.3 Pulse Plating and Deposit Morphology
  • 4.4 Additive Effects
  • 5 Current Distribution
  • 5.1 Introduction
  • 5.2 Current Distribution
  • 5.3 Qualifi cation of Current Distribution
  • 5.4 Quantifi cation of Current Distribution
  • 5.5 Current Distribution and Pulse Plating
  • 6 Mass Transfer during Pulse Deposition
  • 6.1 Introduction
  • 6.2 Ionic Transport and the Concentration Depletion Layer
  • 6.3 Concentration Depletion during Pulse Current Deposition
  • 6.4 Maximum Plating Rate during Pulse Deposition
  • 6.5 Pulse Limiting Current using the Dual Diffusion Layer Concept
  • 6.6 Experimental Verifi cation of the Pulse Limiting Current
  • 6.7 Effect of Mass Transport on Microstructure and Current Effi ciency
  • 6.8 Effect of Mass Transport on Alloy Composition
  • 6.9 Effect of Mass Transport on Additives
  • 6.10 Mass Transport on the Microscale
  • 7 Modelling of Pulse Plating
  • 7.1 Introduction
  • 7.2 Model Equations
  • 7.3 Effect of Adsorbed Additives and Intermediates
  • 7.4 Approximate Analytical Models
  • 8 Pulse Rectifi er Systems
  • 8.1 Introduction
  • 8.2 The Pulse Power Supplies
  • 8.3 Current Waveform
  • 8.4 The Pulse Plating Process
  • 8.5 Safety Information – Electrical Magnetic Fields
  • 8.6 Process Control
  • 8.7 Dimensioning a Pulse Reverse Power Supply
  • 9 Technical Implementation of PP Processes
  • 9.1 Implementation – Guidelines Arising from Theoretical Considerations
  • 9.2 Practical Implementation of Pulse Plating
  • 10 Energy and Material Considerations
  • 10.1 Introduction
  • 10.2 Pulse Plating and Energy Consumption
  • 10.3 Material
  • 10.4 CO2 Emission
  • 11 Pulse Plating of Copper on Printed Circuit Boards
  • 11.1 Introduction
  • 11.2 Summary of early Investigations of Pulse and Pulse Reverse Plating of Copper
  • 11.3 Reactions
  • 11.4 Throwing Power
  • 11.5 Structure and Morphology
  • 11.6 Mechanical Properties
  • 11.7 Superimposed Pulse Reverse Plating
  • 11.8 Recommended Pulse Parameters Settings
  • 12 Pulse Plating of Nickel and its Alloys
  • 12.1 Introduction
  • 12.2 Watts Baths
  • 12.3 Sulfamate Baths
  • 12.4 Chloride Baths and Woods Strike
  • 12.5 Nanocrystalline Nickel Layers
  • 12.6 Nickel-Cobalt and Nickel-Cobalt-Iron
  • 12.7 Nickel-Iron
  • 12.8 Nickel-Copper
  • 12.9 Nickel-Tungsten and Nickel-Phosphor
  • 12.10 Other Nickel Alloys
  • 12.11 Nickel Electroforming
  • 13 Pulse Plating of Tin and its Alloys
  • 13.1 Introduction
  • 13.2 Alkaline Electrolyte Systems
  • 13.3 Acidic Electrolyte Systems
  • 13.4 Gold-Tin Alloys
  • 13.5 Silver-Tin Alloys
  • 13.6 Tin-Zinc Alloys
  • 13.7 Tin-Lead Alloys
  • 13.8 Copper-Tin Alloys
  • 13.9 Pulse Plating and Whisker Formation
  • 14 Pulse Plating of Chromium
  • 14.1 Introduction
  • 14.2 Crack Formation and Elimination
  • 14.3 Microstructured Chromium Surfaces
  • 14.4 Multilayer Chromium Deposits
  • 14.5 Practical Considerations and Application
  • 14.6 Pulse Deposition using Trivalent Chromium Baths
  • 15 Pulse Plating of Precious Metals
  • 15.1 Introduction
  • 15.2 Gold
  • 15.3 Silver
  • 15.4 Palladium
  • 15.5 Platinum
  • 15.6 Rhodium
  • 15.7 Precious Metal Alloys
  • 16 Pulse Plating of Zinc and its Alloys
  • 16.1 Introduction
  • 16.2 Pulse Plating of Zinc
  • 16.3 Zinc-Nickel Alloys
  • 16.4 Other Zinc Alloys
  • 16.5 Hydrogen Embrittlement
  • 17 Pulse Polishing, Machining and Anodising
  • 17.1 Introduction
  • 17.2 Theory of Anodic Processes
  • 17.3 Pulsed Electropolishing
  • 17.4 Pulsed Electrochemical Machining
  • 17.5 Pulsed Anodisation
  • 18 Pulse Deposition of Nanostructured Metal Multilayers
  • 18.1 Introduction
  • 18.2 Processing of Compositionally Modulated Materials
  • 18.3 Dual Bath Electrodeposition
  • 18.4 Single Bath Electrodeposition
  • 19 Pulse Plating in Combination with Particle Dispersion
  • 19.1 Introduction
  • 19.2 Particle Incorporation and Zeta Potential
  • 19.3 Nanoscaled Composite Coatings
  • 19.4 Nickel Dispersion Coatings
  • 19.5 Copper Dispersion Coatings
  • 19.6 Gold Dispersion Systems
  • 20 References
  • 21 Index

Related titles