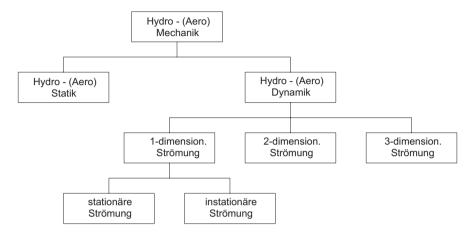
1 Grundlagen der Strömungsvorgänge

1.0 Einleitung



Die Strömungslehre – auch als Fluiddynamik bezeichnet – befasst sich mit den Gesetzmäßigkeiten strömender Fluide (Flüssigkeiten und Gase).

Im Grundlagenteil des Buches (Kapitel 1) werden vorwiegend die *inkompressiblen Fluide* Flüssigkeit und Luft behandelt, denn allgemein gilt: Gase bis zu Drücken von ca. 30 kPa und Strömungsgeschwindigkeiten < 100 m/s können in der Anwendung *inkompressibel* angenommen werden.

Ab dieser v. g. Festlegung (30 kPa) werden die Gase bzw. Dämpfe kompressibel behandelt, d. h. die Dichte ist druckabhängig.

Aus der Technischen Thermodynamik wissen wir: Strömungsvorgänge sind offene Systeme und werden in Strömungs- und Arbeitsprozesse unterschieden.

Bei *Strömungsprozessen* überschreitet keine Arbeit die Systemgrenze ($W_{t-12} = 0$). Bei den *Arbeitsprozessen* ($W_{t-12} \neq 0$) wird Arbeit zu- oder abgeführt, wobei hier nur die zugeführte Arbeit (Pumpen, Ventilatoren) interessieren soll. Arbeitsprozesse mit abgeführter Arbeit bzw. Leistung sind die sogenannten *Kraftprozesse* (Turbinen, Motoren etc.), bei denen meist die kinetischen und potentiellen Energieänderungen vernachlässigt werden können.

1.1 Kontinuitätsgleichung

Im Folgenden werden vorwiegend *stationäre Strömungen* durch Rohrleitungen und Kanäle mit den Einbauten (Einzelwiderstände) betrachtet.

Die freie Strömung im Raum und die instationäre Strömung werden nur bedingt behandelt.

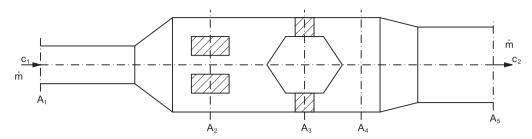


Abb. 1.1: Rohrleitung mit Einbauten

$$\dot{m} = \rho \cdot \dot{V} = \rho \cdot A_1 \cdot c_1 = \rho \cdot A_2 \cdot c_2 - - = \text{konst.}$$
(1.1)

 \dot{m} = Massenstrom [kg/s]

 $\dot{V} = \text{Volumenstrom} [\text{m}^3/\text{s}]$

 ρ = Dichte [kg/m³] (1/ ρ = v)

A = Rohrquerschnitt [m²]

c = Strömungsgeschwindigkeit [m/s]

Je nach Größe der Reynoldszahl (siehe später) sind zwei verschiedene Strömungsformen möglich:

- a) die *laminare* Strömung (kleine Re-Zahl) und
- b) die turbulente Strömung (große Re-Zahl).

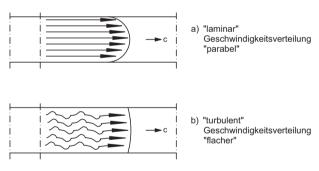


Abb. 1.2: Geschwindigkeitsverteilung im Rohr bzw. Kanal

1.2 Der 1. Hauptsatz der Thermodynamik für Strömungsvorgänge (Energiesatz)

Der 1. Hauptsatz der Thermodynamik drückt eine Energiebilanz aus und ist der Satz von der Erhaltung der Energie. Mit dem Massenstrom \dot{m} ist

$$\dot{Q}_{12} + \dot{W}_{t-12} = \dot{m} \left[(h_2 - h_1) + \frac{1}{2} (c_2^2 - c_1^2) + g (z_2 - z_1) \right]$$
 (1.2)

bzw.

$$q_{12} + w_{t-12} = (h_2 - h_1) + \frac{1}{2} (c_2^2 - c_1^2) + g (z_2 - z_1)$$

der 1. Hauptsatz für stationäre Fließprozesse offener Systeme.

 \dot{Q}_{12} = Wärmestrom [J/s] über die Systemgrenze

 \dot{W}_{t-12} = technische Leistung [W]

 h_{12} = spezifische Enthalpie [kJ/kg]

 $z_{12} = H\ddot{o}he [m]$

 $g = \text{Erdbeschleunigung } 9,81 \text{ m/s}^2$

 $\frac{1}{2} (c_2^2 - c_1^2)$ = spezifische kinetische Energie [m²/s²] bzw. [J/kg]

 $g(z_2 - z_1)$ = spezifische potentielle Energie [m²/s²] bzw. [J/kg]

1.2.1 Strömungsprozesse

Stationäre Fließprozesse offener Systeme, deren technische Arbeit $W_{t-12} = 0$ ist, sind Strömungsprozesse in Rohren, Kanälen, Düsen, Diffusoren, Wärmeübertragern und anderen Apparaten. Sind diese Strömungsprozesse auch *adiabat*, d. h. ohne Zu- oder Abführung von Wärme über die Systemgrenze, so wird Gleichung 1.2 zu

$$h_2 + \frac{{c_2}^2}{2} + g \cdot z_2 = h_1 + \frac{{c_1}^2}{2} + g \cdot z_1$$

oder

$$0 = (h_2 - h_1) + \frac{1}{2} (c_2^2 - c_1^2) + g (z_2 - z_1)$$

oder bei Entfall von $E_{\rm pot}$

$$0 = (h_2 - h_1) + \frac{1}{2} (c_2^2 - c_1^2) = \int_1^2 v \cdot dp + \underbrace{j_{12}}_{\Delta p_v \cdot v} + \frac{1}{2} (c_2^2 - c_1^2)$$

oder

$$0 = v (p_2 - p_1) + \Delta p_v \cdot v + \frac{1}{2} (c_2^2 - c_1^2); \quad v = 1/\rho \text{ [m³/kg]}$$

Anmerkung: Ohne das Verlustglied Δp_{v} (Druckverlust) erhält man für inkompressible Fluide die *verlustlose* Bernoulli-Gleichung

$$\frac{p_2}{\rho} + \frac{c_2^2}{2} + g \cdot z_2 = \frac{p_1}{\rho} + \frac{c_1^2}{2} + g \cdot z_1$$

Mit dem Druckverlust $\Delta p_{\rm v}$ erhält man die *erweiterte* Bernoulli-Gleichung für inkompressible Fluide.

1.2.1.1 Bernoulli-Gleichung für verlustlose stationäre Strömungsprozesse

Wie in Abschnitt 1.2.1 dargestellt: Ohne das Verlustglied Δp_{v} (Druckverlust) erhält man aus dem v. g. allgemein:

$$\frac{p_1}{\rho} + \frac{c_1^2}{2} + g \cdot z_1 = \frac{p_2}{\rho} + \frac{c_2^2}{2} + g \cdot z_2 = \text{konstant}$$
 (1.3)

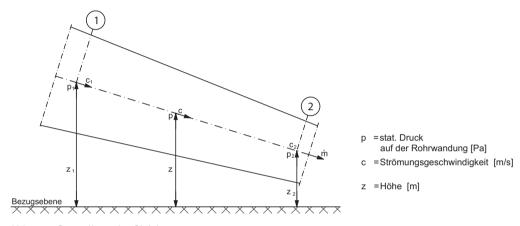


Abb. 1.3: Darstellung der Gleichung 1.3

Die Gleichung 1.3 ist auch die spezifische Energiegleichung.

Man erkennt, dass Gleichung 1.3 gültig bleibt, wenn sich das Bezugsniveau für die Höhe z ändert und auch, wenn der Bezugsdruck p sich ändert,

 p_{st} = statischer Druck [Pa],

$$\frac{\rho}{2} \cdot c^2 = p_{\rm d}$$
 = dynamischer Druck [Pa] oder Geschwindigkeitsdruck oder Staudruck,

 $\rho \cdot g \cdot z =$ Höhendruck [Pa] oder hydrostatischer Druck

und es gilt:

Gesamtdruck
$$p_{ges} = \text{stat.}$$
 Druck $p_{st} + \text{Staudruck}$ p_{d} (1.4)
$$p_{ges} = p_{st} + p_{d}$$

Anmerkung:

1. Die Bernoulli'sche Gleichung setzt konstante Dichte ρ voraus. Dies ist für Flüssigkeiten nahezu erfüllt, aber auch bei Gasen kann mit guter Näherung ρ als konstant gesetzt wer-

den, wenn die Strömungsgeschwindigkeit c kleiner als 30 % der jeweiligen Schallgeschwindigkeit ist (bei Umgebungsluft < 100 m/s).

2. Bei Gasen kann wegen der geringen Dichte ρ und dem höheren Geschwindigkeitsniveau die potentielle Energie gegenüber den beiden anderen Summanden in der Bernoulli'schen Gleichung vernachlässigt werden.

Für ein Fluidteilchen der Masse m gilt für jeden Punkt der Stromlinie gemäß Abbildung 1.3:

$$\frac{m}{2} \cdot c^{2} + \underbrace{m \cdot g \cdot z}_{\text{Lage-}} + m \cdot \frac{\rho}{\rho} = \underbrace{E_{\text{ges}}}_{\text{Gesamt-energie}} = \text{konstant}$$
(1.5)
$$\frac{m}{2} \cdot c^{2} + \underbrace{m \cdot g \cdot z}_{\text{Lage-energie}} + m \cdot \frac{\rho}{\rho} = \underbrace{E_{\text{ges}}}_{\text{Gesamt-energie}} = \text{konstant}$$

Die verschiedenen Formen der Bernoulli-Gleichung:

	Dynamischer Anteil		Geodätischer Anteil		Statischer Anteil		Gesamt			
	Energiegleic	hung								
	$\frac{c^2}{2}$	+	$g \cdot z$	+	$\frac{p}{ ho}$	=	e_{ges}	=	konst.	
Druckgleichung										•
	$\frac{\rho}{2} \cdot c^2$	+	$\rho \cdot g \cdot z$	+	ρ	=	$ ho_{ges}$	=	konst.	(1.6)
Höhengleichung										•
	$\frac{c^2}{2g}$	+	Z	+	$\frac{p}{\rho \cdot g}$	=	Z _{ges}	=	konst.	

Anstelle von z wird oft h gesetzt.

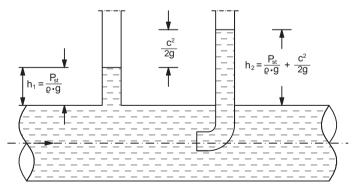
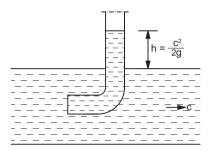


Abb. 1.4: Darstellung des p_{st} und des Fließdruckes = dynamischer Druck p_{d} in einer Rohrleitung

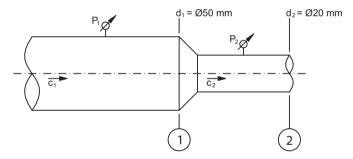
Strömungsgeschwindigkeit c:

$$\Delta h = \frac{p_{st}}{\rho \cdot g} - \frac{p_{st}}{\rho \cdot g} + \frac{c^2}{2g}$$
$$c = \sqrt{2g \left(h_2 - h_1\right)}$$

Bestimmung der Fließgeschwindigkeit in einem Fluss:



Beispiel 1



Wasser
$$\rho = 1000 \frac{\text{kg}}{\text{m}^3}$$

$$p_1 = 4 \text{ bar (ü)}$$

$$z_1=z_2=0$$

Gesucht: a) Wasseraustrittsgeschwindigkeit c_a

- b) Strömunsgeschwindigkeit c_1
- c) Ausflussmenge

Zu a)

$$\frac{p_1}{\rho \cdot g} + \frac{c_1^2}{2g} = \frac{p_2}{\rho \cdot g} + \frac{c_2^2}{2g} \; ; \; c_2 = c_a \; ; \; c_1 = c_2 \cdot \frac{A_2}{A_1} = c_2 \left(\frac{d_2}{d_1}\right)^2$$